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The Becker-Doring Equations and the
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In this paper the relation between the kinetic set of Becker-Doring (BD) equa-
tions and the classical Lifshitz-SIyozov (LS) theory of coarsening is studied.
A model that resembles the LS theory but keeps some of the nucleation effects
is derived. For this model a solution is described that shows how the kinetic
effects explain the particular solution selected in the LS theory. By means of a
renormalization procedure, a discrete group of transformations is shown to play
an important role in describing the structure of the solution near the critical size
of the LS theory.
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1. INTRODUCTION

The Lifshitz-SIyozov (LS) theory is used to model the formation of
aggregates like liquid drops, growing crystals, spin seas and other physical
problems. In all cases it is expected to describe the late-stage coarsening of
the system under consideration.

In the LS theory of coarsening the growth of particles is driven by a
steady diffusion field. The concentration of the magnitude that diffuses
(that depends of the particular physical situation considered) is given at the
surface of the agregates by the Gibbs-Thomson law. The amount of "under-
saturation" that produces the growth of the aggregates is a controlling
parameter that is determined by means of the conservation of mass of the
aggregating material. Namely, the amount of the substance away from the
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Moreover, this theory also provides a detailed description of the dis-
tribution of sizes for the aggregates. As a matter of fact, in the LS theory,
a family of solutions satisfying (1.1) for different values of the constant A
is obtained, all of them with a similar concentration of particles. The par-
ticular distribution selected by the LS theory is picked among that family
by means of a stability criteria.

Although the LS theory is very succesful in predicting the rate of
growth (1.1), it is very natural to raise some mathematical questions about
the model. Actually, according to that theory, there are unstable solutions
arbitrarily close to the "right" solutions of the model, and it then seems
natural to ask the reason that makes this particular solution of the model
stable.

In this paper a Fokker-Planck approximation of the kinetic Becker-
Doring (BD) model for aggregation of particles is studied. When the coef-
ficients of this last model are selected adequately, the BD system resembles
the LS model for large sizes of the clusters. However, part of the kinetic
effects included in the BD equations will be kept in our approximation,
since although they are small, they play an important role for sizes of the
clusters larger than the critical ones in the LS theory, and are also impor-
tant in determining the distribution of clusters for subcritical sizes of the
aggregates. The picture that emerges from the analysis performed here is
that large clusters, that are nucleated in very small quantities due to kinetic
effects in the BD model, begin to grow to the rate (1.1) as soon as their size
coincides with the power At1/3. The analysis performed here predicts also
that in the long term, these clusters cease to grow, and they keep their size
constant for long times. The precise way in which these aggregates stop
growing is precisely the factor that determines the concentration of clusters
for subcritical values of the radius in the LS theory. A precise mathematical
description of the way in which this happens is given later (see Section 5).
Among the most relevant facts we should mention that near the critical size
there exists a discrete rescaling group, and that the solution obtained here
is approximately self-similar for this discrete group near that region. In
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aggregates that is avalaible to enter in the coarsening process added to
the amount of substance in the aggregates should remain constant. An
assumption is also made that asserts that the distance between aggregates
is very large, so that the diffusion field can be obtained for each cluster
assuming that it is isolated.

The LS theory relies in a self-similar solution that predicts a growth
rate for the radius of the clusters of the type:
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particular, this implies that the "undersaturation" that drives the coarsening
of the particles (denoted as S(t)), behaves as

for some suitable constant B>0, The first terms of the series (1.2) are
obtained in the original paper by Lifshitz-Slyozov.(9) A precise meaning of
the series (1.2) will be given in the Section 5 below.

A detailed description of the BD and LS models can be found in ref. 8.
The LS theory is also discussed in the reviews.(15,16) Numerical solutions
of the BD model and a comparison with the LS theory are discussed in
refs. 13 and 14. The analysis of the mathematical well-posedness of the BD
model and its asymptotic behaviour for long times has been considered in
ref. 2. A recent discussion of the connection between the LS theory and the
set of Becker-Doring equations can be found in ref. 11. The existence of
metastable solutions for these equations has been studied in refs. 6 and 12.
The analysis of other models of coagulation equations makes the content
of refs. 5 and 7.

In Section 2 of this paper the Fokker-Planck approximation that will
be used here is derived. The instability of the "wrong" solutions of the LS
theory will become clearer for the model considered here, and will be
shown in Section 3. The construction of the solution of the Fokker-Planck
equation that approaches to the self similar solution of the LS model will
be derived in Sections 4 and 5 by using formal expansions. In Section 6
some concluding remarks will be given. In Appendixes A and B at the end
of the paper some technical results that have been used in previous sections
of the paper are proved.

We finally remark that the notation f(x)» g(x) as x -> o will be
used repeatedly in the paper with the meaning l i m x - > 0 ( g ( x ) / f ( x ) ) = 0.

2. DERIVATION OF THE FOKKER-PLANCK MODEL

The Becker-Doring system is an infinite set of equations that describes
the variation in time of the concentration of clusters or aggregates made of
l particles. The Becker-Doring model assumes that the only characteristic
of the clusters that enters in its dynamics is the number of particles that
compose the cluster, and not particular features as their geometry.

Denoting as c I ( t ) the concentration of clusters of size l at a given
time t, the BD equations have the form (see ref. 3):
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where the flux of clusters from size l to clusters of size (l+ 1) is given by:

for some suitable coefficients aI bI. The evolution equation of the concen-
tration of monomers cI is not included in (2.1), but is determined by
requiring the conservation of the total number of particles:

The choice of the coefficients that is considered here is made in order
to obtain the LS model for large values of l, as suggested in ref. 13. More
precisely, we will take:

where q is a suitable positive constant.
Many mathematical properties of the model (2.1)-(2.5), have been

studied in refs. 2 and 11 for more general choices of the coefficients. In par-
ticular, it was obtained in ref. 2 that for p < p 0 , where p0 is a critical con-
centration, there exists a steady state solution of (2.1)-(2.5). Using the
existence of an entropy associated to the system that can be used as a
Lyapunov function, it is proved there that the solutions of the evolution
problem converge asymptotically to the steady state as t-> o. For p>p0

it was obtained in ref. 2 that the solutions of (2.1)-(2.5) converge to the
maximal steady state, uniformly on bounded sets of l. However, in this case
an amount of mass p — p0 escapes towards the region l » 1 as t-> o. It is
then assumed that the amount of mass that is "lost" gives place to
aggregates of particles of a different phase.

In this paper the dynamics of large clusters is considered. To this end,
it is convenient to introduce the following notation. Let us define the dis-
crete derivation operator given by:

The system of equations (2.1)-(2.5) can then be written as:
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where

For large values of l, it is natural to approximate the operator D
by standard derivation operators if the variation of cl+1 is not too fast
on the l variable. We then obtain, to the lowest order, the following
Fokker-Planck equation:

The results in ref. 2 previously described imply that there is a mass p0 in
the region where l~ 1. Taking into account that the equation (2.7)
describes the evolution of c(l, t) for large values of l, it is natural to replace
the condition (2.3) by:

that complements the equation (2.7). This last describes the behaviour of
c(l, t) for large values of l. To study (2.7), (2.8) we introduce a set of self-
similar variables, that correspond to the natural scales of the problem
obtained on dropping the second derivatives in (2.7):

In this set of variables equations (2.7), (2.8) become:

The function A( r ) gives a measure of the deviation of c1 = 1 with respect to
the equilibrium value, that in this particular case is c1 = 1.
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Dropping the term e - 2 r / 3 ( £ l / 3 P ) f i in (2.10), we obtain the classical
Lifshitz-Slyozov model, written in self-similar variables. If we keep the
term e - 2 T / 3(c1 / 3£)ee, we include thereby the kinetic effects that are not
taken into account in the LS theory. In order to have a well defined mathe-
matical problem, a boundary condition at £ = 0 is required. The behaviour
of c(l, t) in the region l« 1 is given by the maximal steady state, as it was
shown in ref. 2. In the situation considered here, this maximal steady state is

where zs is the radius of convergence of the series £I=1 lQ1zl. Taking into
account the exponential decay of the solution (2.12) as l» 1, we deduce
that, in order to match the solutions of (2.10) with these steady states, it
is natural to impose the following boundary condition

and we need to complement these equations with the initial data

Problem (2.10), (2.11), (2.13), (2.14) is well posed from a mathemati-
cal point of view (locally in time) for a large class of initial data, as will be
proved in Appendix A at the end of the paper.

At this stage, it is convenient to recall some of the basic facts of the
LS theory. The distribution of sizes of the aggregates is described, according
to this theory, by a steady state of (2.10) without the term e -2r /3(£1/3£)K,
namely

with the additional condition (2.11). There exist solutions of (2.15), (2.11)
only if the real number Ao satisfies

A stability analysis performed in ref. 9 indicates that only the choice
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could give a stable solution. The steady distribution of clusters is then
given by

where C>0 is selected in such a way that (2.11) holds.

3. UNSTABLE SOLUTIONS OF THE FOKKER-PLANCK MODEL

We now prove the following result

Theorem 1. There is no nonnegative solution of the problem
(2.10), (2.11) such that

Notice that no assumption is required about the boundary condition at
£ = 0.

Proof of Theorem 1. We denote as e 1 ( T ) , e 2 ( t ) the roots of the
equation

such that 0<e 1 ( r ) <e 2 ( T ) < °. It is readily seen that (3.1) implies that
£i(*)> e2(T) exist for T large enough. Let us write

Some simple computations show that (2.10) may be written as
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where

and

where limT->c e(r) = 0 and C>0 is a fixed constant.
We now fix TO > 0 large enough. Let us denote as F(£, T) the solution

of Eq. (3.2) in the set £e (£2,o — £o, £2, o, + Eo), T > T O with e 0 >0 small,
that satisfies the boundary conditions

and the initial data

where the dependence of P on TO is assumed, but it will not be explicitly
written for simplicity. Using the classical maximum principle for parabolic
equations, the following upper estimate is easily obtained

Let us consider the function

with

and
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where a= 1/3(£2,O)1/3, and_0<u <min{ 1/3, (1 -A0(f2 ,or2 / 3 /3)}. It is
not difficult to check that &(£, r) defines a supersolution for (3.2) in the
region £ e (£2, «> + £o/2, £2,«, + £o)> t >TO if £0 is selected small enough and
T0 is sufficiently large. To this end, it has to be verified that

that follows after some simple computations by using (3.3)-(3.5). Taking
into account that Y satisfies the boundary conditions (3.6), as well as (3.7)
and (3.8), the following estimate follows

if 3e0/4<^ — < J 0 ^ £ 0 , T ^ T O , where y>0 is a suitable constant depending
on e0. A similar bound can be obtained in the region — 3£0/4^<J — £„>
—e0 with a symmetric argument. Classical regularizing effects for parabolic
equations then imply a bound of the form

if T > T O . By definition V solves (2.10). Integrating this equation in the
interval (£2,«, — £o> £2, &, + £o)> it turns out that

and taking into account (3.9), it follows that J|^^!P(^,T)^ grows
exponentially fast. In order to conclude the argument, we notice that for
any given function f satisfying the hypothesis of Theorem 1, the strong
maximum principle implies that V(. , r 0) becomes strictly positive in the
interval (£2 o — £0, £2, o + £o)- We can then use the function BY as a sub-
solution for B>0 small enough. Thus J^°°t^° 0(J, T) dE, grows exponen-
tially fast, but this contradicts (2.11), whence Theorem 1 follows.

Theorem 1 rules out the possibility of A(T) being asymptotically larger
than Acrit It cannot be asymptotically smaller either, although a rigorous
proof of this fact would not be provided here. However a heuristic argument
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relying on the WKB method will be given that shows that it is not possible
to have that

Indeed, let us assume that (3.10) takes place. Then Eq. (2.10)
approaches to

where now Ao <^crit. Let us denote as G(£, T, TO, R) the solution of (3.11),
(2.13) for T > T O with initial data

Let us also pick TO large enough in order to be able to approximate (2.10)
by (3.11). When T0»l , the coefficient in front of the term containing
second order derivatives is very small, and we can use the WKB method
in order to approximate G(£, T, TO, R). The problem can be made simpler
by introducing a new space variable

that transforms (3.11), (3.12) into

For T-»T0+, y ~ R 5 / 6 , we approximate this problem by another with
constant coefficients. Then to the lowest order
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as T->TQ, \y — R5/6\ -»0. The classical WKB method suggests to expand
the function P as

The approximation until the order S0 defines the so called "geometric
optic" approximation and the approximation until the term S1 defines the
"physical optics approximation" of <P. It turns out that the function S0

satisfies the usual Hamilton-Jacobi equation associated to the hamiltonian

and the function S satisfies a transport equation. Both equations can be
analyzed by means of a careful analysis of the corresponding characteristics
that are given by

The evolution of the function S0 along the solutions of (3.19) is
described by

A detailed analysis of (3.19) and (3.20) taking into account that we
are interested matching with (3.16) shows that the Green function
G(£, T, T0, R) is concentrated along a curve that propagates along the
corresponding characteristic that starts at the point £, = R and approaches
towards the origin. The Green function spreads a little amount in space
due to the diffussion to a region of size R1 / 3e - ( T - T 0 ) . The WKB approxima-
tion breaks down near the origin where, however, a standard boundary
layer analysis can be made. If R is large the corresponding characteristics
approach towards the origin exponentially fast. In this case the Green func-
tion G(£, T, T0, R) can be approximated as
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where the value of the coefficient on front of the Dirac mass has been taken
exactly as e ( T - T 0 ) because a simple integration of (3.14) shows that the mass
of the Green function grows exponentially.

We can then write the following representation formula for the solu-
tion of (3.14)

and taking into account (3.21) it follows the approximation for P ( E , r )

Notice that as soon as the characteristics arrive to the region £ = O( 1), they
cross the line £ = 0 in a time of order unity, and the mass of the Green
function becomes negligible (a fact that is not taken into account by the
approximation £ ~/Re - ( T - T ° ) ) . Then

and this last integral approaches to zero as r — TO -> 00, that contradicts
(2.11), whence it is not possible to have Ao < Lcrit. Notice that a crucial fact
is the approximation (3.21). The key point in the argument is the lost of
mass for the Green function near the origin as the time grows.

4. THE CASE A ( T ) ~ A c r i t

In this section the approximations that are used to obtain a solution
that converges asymptotically as T -» o to the self-similar LS solution are
described. The two main ingredients of the approach developed here are
the following

(1) The nucleation effects produce for T large an exponential tail with
the form

(2) For T -> o the effect of the term e-2T/3(£1/3P)e in (2.10) can be
neglected, and (2.10) can be approximated by
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Assumption (1) is very natural from a physical point of view. In fact,
in the original set of variables it just means that for large clusters l» 1 the
concentration has the distribution

that is a typical kinetic distribution of clusters that can be expected from
Eq. (2.7). Mathematically, it is not hard to justify (4.1), at least for fast
decaying initial data. Actually, on introducing the new space variable

Eq. (2.10) becomes

The dominant terms of this equation as n -» x are

This equation can be transformed in a classical diffusion equation by
means of the change of variables

whence for compactly supported initial data there holds

as n-> o. If we take T» 1, (4.1) follows.
The term o ( l ) that appears in the exponent of (4.1) depends very

strongly on the initial data. However, from the point of view of the
accuracy of the expansions that will be obtained in this paper (4.1) will be
enough.



The dependence on A(T), although essential in the forthcoming argu-
ment, will not be made explicit by notational simplicity. Notice that the
solutions of (4.4) decay exponentially fast for g large. On the other hand,
in the LS self-similar solution A(T) = Xcrit. We then assume A(T) ~ Acrit in
(4.4). In this case the behaviour of g(r; TO; £0) is very sensitive to small
changes of I(T), since the equation

208 Veldzquez

Assumption (2) is very natural when we take into account the small-
ness of the coefficient e - 2 r / 3 in the term e~ 2 r / 3 (E l / 3 P)ee . Some care is
needed, however in the regions where Pee is large, a fact to be reckoned
with for the solutions described here when £ ~ q/2. Actually, it will be
checked "a posteriori" that the assumption (2) holds for the solutions
obtained below. In some simple parabolic equations like ut = e - y t u x x + Aux,
y>0, it can be easily seen that the fundamental solution can be
approximated by the corresponding fundamental solution for the hyper-
bolic equation in which the diffusive term is dropped. Similar results can be
expected for more general equations like (4.3), but a general proof of such
result will not be provided here.

The simplified Eq. (4.2) can be studied by using characteristics. Let us
denote as g(r; T; £0) the solution of the problem

has a double zero at g = q/2. In particular, if A(T) is slightly above the value
Acrit, the equation q — I(T) g1/3 + g = 0 has two roots, the largest one being
stable. For I(T) slightly below Xcrit the equation q — A(r) g1/3 + g = 0 has
not roots, and all the solutions of (4.4) would cross to the region g<q/2
as T —> oo. In particular, the time that the function g(r; TO; £0) remains close
to the critical line g = q/2 is very sensitive on A(T). This fact will play an
essential role in our argument here, and will be made more precise later.

Notice that in terms of the function g defined by (4.4), the solution of
(4.2) satisfying (4.1) is given by

as T -> oo where
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and T0 is selected large enough to assert the validity of (4.1) and T»TO.
Note also that we use the fact that, as T -» oo, the values of £0 that we need
to take in order to have £ > 0 are those with £0 » 1. Indeed, notice that the
function g(r, TO; £0) reaches the value g = 0 for finite T, since otherwise we
would have that g->q/2 as A( r ) -»Acrit. Then, by (4.5), P would grow
exponentially in the region £ ~ q/2, and the same would happen with
\£ £&(£, T)d£, that contradicts (2.8).

We then need to select L(r) such that (2.8) holds, whence by (4.5) we
require

This provides an integral equation for A(T) that describes the asymptotics
of this function as T -> oo. Actually, we can simplify (4.6) further. To this
end, we argue as follows. If T -> oo, the values of £0 that enter in (4.6) satisfy
£0» 1. The factor exp(-(9/25) e2T°/3(£0)5/3) is then very small. In order to
have (4.6), function g(r, TO; £0) needs to remain stacked in the region £ ~ q/2
for a long time, in which the factor exp(Jto (2 — (A s/3) g(s; T O ; e 0 ) ) d s ) has
time to increase P until values of order one. Notice that near the critical
line, (2 —(A(s) /3) g(s; TO; £ 0 ) )~ 1. On the other hand, for large values of £0

the function g is close to £ 0 e - ( T - T o ) until g becomes of order one. Denoting
as TI the time in which the function g is close to the critical value £ ~ q/2,
we would have

Using (4.5), and taking into account that the change in the function P is
not very relevant during the time that the function g needs to reduce its
value from £0 until £ = O( 1) it follows that near the critical line one has
that, to the leading order

In order to make this function of order one we would need

where we just keep the leading term.
Summarizing, we have obtained that for large values of T the problem

(4.6) can be approximated to the leading order by the following one:
Find A(T) such that the function g(r, TO; £0) that reaches the region

g&q/2 for times of order T1 remains stacked at the line £%<//2 during a
time of order r(r,) ~e(5/3)r1.
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Once the function T ( r1 ) has been found, the function g takes values
in the region g ~ q / 2 . It is then natural to approximate Eq. (4.4) by the
dominant terms near the critical line. We then replace (4.4) by the ordinary
differential equation

where

The solutions of Eq. (4.8) can become ±00 for finite values of t. The
time that the corresponding solutions g spend to take on all values until
g = O ( 1 ) is of order unity, and it is then negligible compared with T ( C 1 ) .
Then, with the same precision that in the case of the previous approxima-
tions, we can reformulate the approximate problem in the following way:

Find e(r) such that the solution of (4.8) satisfying

verifies

where

We notice that, once this problem has been solved, the corresponding
function P given by (4.5) yields the behaviour of the selfsimilar LS solution
for £ < q/2. Indeed, let us denote by T2 a characteristic time where

It is readily seen that T2 ~ t1 + T ( T I ) ~ T(T1). Since the choice of T ( t 1 )
implies that 0 becomes of order one for T ~ T I + T ( T 1 ) , using (4.7) we
obtain that along the characteristic line £ = g there holds
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and on the other hand, using (4.8) we deduce from (4.12)

for r<T2. Using the fact that £, = g, we readily obtain that for each fixed
value of T:

as £ -> (q/2) .It is readily seen that this behaviour coincides with the
asymptotic behaviour of the LS self-similar solution near the critical line.
Moreover, if we now integrate by characteristics equation (4.2) beginning
with this asymptotic behaviour near the critical line, we recover the self-
similar solution of the LS theory. The boundary condition (2.13) does not
play an important role, since the direction of the convective term allows to
connect the value obtained for the LS theory at £ = 0 with the boundary
condition P(0, r) = 0 as can be seen by means of standard boundary layer
theory.

We then need to solve the problem (4.8), (4.9), (4.10), (4.11), that
contains all the main features of the model (2.10), (2.11), (2.13) near the
critical line. As was previously indicated, that problem has an extreme
sensitivity to small variations of E(T) in (4.8). A solution for (4.8), (4.9),
(4.10), (4.11) will be obtained in the next pages using the invariance of the
problem under a suitable discrete group of transformations.

5. A RENORMALIZATION PROCEDURE

In this section the problem given by (4.8), (4.9), (4.10), (4.11) is solved
by taking advantage of a particular invariance of this system under a
suitable rescaling group. We can eliminate the numerical constants in the
problem by means of the change of variables
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that transforms (4.8), (4.9), (4.10), (4.11) into the following problem. Find
S(s) such that

where

Notice that S(s + R) is basically A(T).

A. A Discrete Group of Transformations

The key property of the problem (5.1), (5.2), (5.3), (5.4) that will be
used here is its invariance under the following transformation

that defines a new set of variables s, y, S, R, T. Notice that (5.6), (5.7) and
(5.8) imply

Using this expression and (5.5), (5.6) in (5.1) we obtain
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that after some simple computations yields

213

On the other hand, (5.6) implies that s = 0 becomes S = 0. Using thus (5.5),
we obtain

and finally (5.5), (5.6), (5.9) imply

Notice that (5.10), (5.11), (5.12) give the invariance of (5.1)-(5.4) under
(5.5)-(5.9).

B. Analysis of a Bidimensional Iteration Map

We need to understand the properties of the iteration map defined by
means of (5.8), (5.9) on the quadrant R+ x R + . To this end, we write the
corresponding transformation as

Some simple properties of the iteration S defined by means of (5.13) are the
following

(1) The only fixed point of S in R+ x R+ is (R, T) = (0,0).

(2) The variables R, T decrease in each iteration.

(3) For any (R, T) there holds

(4) The transformation S is invertible. The inverse of S is given by

and one has that
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It is important to understand the structure of the curves in the quad-
rant R + x R + that are invariant under the transformation S. we are inter-
ested in graph-like curves in U+ x R+ with the form

The curve defined by (5.14) is invariant under S if and only if the
function f satisfies the functional equation

It is easily seen that we can obtain solutions of this equation if we
prescribe the values of / in any interval of the form [ R0, eRo — 1) with
R0 > 0, just by iteration of (5.15). In particular the solutions of (5.15) could
be extremely oscillatory and also very irregular.

It is natural to expect the existence of a particular class of solutions of
(5.15) that are not oscillatory as R->0+. To wit, let us assume that f is
smooth enough near the origin. Using Taylor expansion, it should be
possible to make the following approximation

We then write (5.15) as

We then approximate (5.15) by the differential equation

whose solutions behave in the form

as R -»0, where C > 0 is an arbitrary constant. This argument is made
precise in the following theorem.
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Theorem 2. For each constant C>O there exists an unique solu-
tion of (5.15), that we will denote as fc, such that

The solution fc is infinitely differentiable in R+ and is monotonically
increasing in the R variable. Moreover, if C1 < C2, there holds

The functions fc depend continuously on the C variable.

The proof of Theorem 2 will be given in Appendix B.
There are other properties of the functional equation (5.15) that it is

worth noticing. If C = 0 in (5.16) then f = 0. Furthermore, when C->0 +

the solutions of (5.15) approach to zero in compact sets of R. We then
formally obtain in the equation (5.15) the linear approximation

This equation can be easily solved by iteration. Its solution is the following
function

where Q(R), that plays an important role in the iteration 5 defined in
(5.13), is given by

where y is Euler's constant, and the family of functions gk(R) is defined
inductively as follows

Some properties of the functions Q, gk that will be used later are
collected in the following result that will be proved in Appendix B.
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Theorem 3. The infinite product that defines the function Q in
(5.19) converges. Moreover, there holds

For each value of n and for any d>0 arbitrarily small, funcion Q(R)
satisfies

as R-» oo.
For each fixed value of R, the asymptotic behaviour of the functions

gk(R) as k -» oo is given by

where u(R) is a function increasing on R.

Formula (5.22) states that the function Q(R) formally satisfies

as R -> oo. It is important to notice that the approximation of the solutions
of (5.15) by means of (5.18) for C-»0+ only valid for not very large values
of R. In fact, the approximation (5.18) breaks down if CQ(R)~ 1. In any
case this discussion will not be pursued here, since we will not need to
study in detail the functions fc(R) as C->0+ .

We need however to study the asymptotic properties of the equation
(5.15) as #->oo. To this end, it is convenient to introduce a suitable
auxiliary function whose main properties are described in the following

Theorem 4. There exists an unique function He C m ( R ) such that
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Such a function H is (strictly) monotonically increasing, and it satisfies

The proof of this Theorem will also be given in Appendix B.
Condition (5.26) is just a normalization property. It is convenient to

think of the function H when £ -» + oo as given by:

Condition (5.27) indicates that the function H grows extremely fast for
large values of £ if the argument of the function is slightly increased.

Besides providing a useful technical tool in the study of Eq. (5.15),
function H will be important here because it gives a simple method of
describing the asymptotic behaviour of the functions f c ( R ) defined
in Theorem 2. The following result is the key point that explains the use-
fulness of the functions f c ( R ) in the analysis of the problem (5.1), (5.2),
(5.3), (5.4).

Theorem 5. The asymptotic behaviour of the function f c ( R ) as
R -> GO is given by:

The proof of Theorem 5 will be given in Appendix B.
It is relevant for the study of the problem under consideration to

remark that (5.24) readily implies

C. Solution of (5.1)-(5.4)

We now use the previous results to solve (5.1), (5.2), (5.3), (5.4). As
a preliminary step, we show how to solve the problem (5.1), (5.2), (5.3)
where the function T(R) satisfies

instead of (5.4), where.fc is as in Theorem 2. With this particular choice
of T ( R ) , problem (5.1), (5.2), (5.3) is invariant under the transformation
(5.5)-(5.9). It is then natural to look for a solution of the problem in this

as £ -> + oo for any o > 0.
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particular case which is invariant under that discrete set of transformations.
We now have that

Iterating this formula we deduce

where the functions gk(s) are defined as in (5.20). Using (5.23), we readily
see that the series in (5.31) converges. Then

In order to compute the last limit, we write

as N-> oo, where Q is defined in (5.19).
On the other hand (5.23) implies I n ( g N ( s ) ) - + Q as N-> oo. We then

need to compute the asymptotics of S(s) as s->0. Using (5.30) and (5.16)
we obtain T(R) ~ CR2 as R -> 0+. Notice that in (5.1) we need to solve the
equation for 0<s<T(R)«R. It then follows that, if d(s) is smooth
enough near the origin, then S(s + R ) K d ( R ) in Eq. (5.1) if R->0 + . The
problem (5.1)-(5.3) can be solved with this approximation to obtain

Using (5.35) and (5.33), it then follows
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whence

The corresponding function y(s, R) can be then obtained by iterating
the relation

that follows from (5.5)-(5.9). It is then easily seen that

and, taking the limit N->oo, the series converges by (5.23). We now
compute

Using (5.23) and the approximation (5.34) we deduce

where u(R) is as in (5.23). we then have
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It is not hard to check by direct computation that (5.31), (5.37) is a
solution of the differential Eq. (5.1). On the other hand, if R>0, the series
in (5.37) is bounded for s = 0, whence (5.2) holds. To verify (5.3), we just
need to check that with the choice of T(R) given in (5.30), there holds

The proof of (5.38) will be given in Appendix B.
Summarizing, we have obtained a solution of (5.1)-(5.3) with T(R)

given in (5.30). We now study the problem (5.1)-(5.3) with the choice of
T(R) that corresponds to the original problem (5.4). The solution that will
be obtained here is not an exact solution as in the previous case, but just
an asymptotic solution as R-> oo. However, the main idea is very close to
the analysis performed for (5.30). Indeed, the asymptotic behaviours (5.28)
in Theorem 5 are very different for small variations of C. Among the
asymptotic behaviours (5.28), the "closest" to the one in (5.4) is the
corresponding to C=l/2, in the sense that the asymptotics (5.28) for
C> 1/2 grows faster than any exponential, and for C< 1/2 the behaviour
(5.28) is much smaller than any exponential. Under the iteration S in
(5.13), the function T(R) given in (5.4) approaches very fast to the curve
T=fl(R), since otherwise repeated application of the inverse map S-1

would contain points in regions with the asymptotics (5.28) with C # 1/2,
but those points are very different from the function (5.4), this gives a
contradiction. It is important to remark that the application S -1 amplifies
small differences extremely fast, whence the convergence to the curve
T= f i ( R ) is very fast as well.

We now make this argument more precise. If we apply N times the
iteration S in (5.13) to the function (5.4), we obtain a function that we
denote as TN(RN), where RN gives the transformed R coordinate under N
iterations of S. There is a simple way of writing RN by means of the func-
tion H defined in Theorem 4. Indeed, by (5.24) it actually holds that

On the other hand repeated iteration of 5 implies

where p is as in (5.20), and pN denotes N iterations of this mapping acting
over the function 1 + R + eBR. If we write £ = H - 1 ( R ) , it then follows that
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In order to solve the problem (5.1)-(5.4), we iterate the transforma-
tion S. Arguing as in the case of (5.30), we would obtain

where 6N is the transformed 6 after N iterations of the discrete group
(5.5)-(5.9). We need to compute in this case limAr_00[(5A,(ln(gAr(s)))/
(0^=0 g k ( s ) ) 2 ] . Notice that the function TN(RN) approaches near the
origin to the function f1 (R), and it is then natural to obtain SN as a pertur-
bation of the function 6 near the origin obtained in the analysis of the case
(5.30).

Notice further that TN(RN)/(RN)2 depends on R. Let us compute the
asymptotic behaviour of this function as R -» oo. In this limit, using the
formula of p in (5.20) we obtain to the lowest order in the Taylor expansion

as £ -> oo. Using (5.24) we can write to the lowest order

and iterating (N — 2) times more we obtain

as C -> oo. If we just keep the dominant terms as (-> oo, recalling (5.39) we
obtain the following approximation

As in the previous case we assume that SN(s + R N ) ~ 3N(s). By (5.25)
and (5.20) we obtain in the limit N-> oo
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where Q(R) is as in (5.19). It then follows that

as R-> oo, N-» oo. Notice that RN= gN(R). It then follows that

whence using (5.40) we deduce

as s-> oo. Notice that in (5.41) we obtain the dependence of the precise
form of the function T(R) (in particular the exponent B), that appears
"beyond all the orders" of the series. If B= 1, we recover the series (5.36)
with C= 1/2. When B> 1, the correction obtained in (5.41) is negative, as
it should be expected from (5.1), since in this case we are requiring the
solutions of (5.1) to stay longer near the critical line than in the case in
which T(R) is given by (5.30). If B < 1 we obtain in (5.41) a positive correc-
tion for 6.

It is clear that the procedure described here allows to solve the
problem (5.1)-(5.3) asymptotically as R-> oo for a large class of functions
T(R).

6. CONCLUDING REMARKS

In this paper a Fokker-Planck equation has been analyzed whose
solutions approach for long times to the classical Lifshitz-Slyozov model of
coarsening. This model, that it is derived as a limit case of the classical
Becker-Doring equations, contains information about the nucleation that
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takes place by kinetic effects. In particular, a detailed analysis of the critical
sizes of the clusters where the transition between the region dominated by
nucleation (for clusters of supercritical size) and the region that can be
described by the LS theory (subcritical size) has been given. The region
near the critical size is approximately invariant under a discrete group of
transformations. The structure of the solution of the Fokker-Planck equa-
tion may be described by means of a renormalization procedure associated
to the discrete group of transformations. The properties of this group of
transformations have been studied in detail in this paper. In particular this
invariance predicts for the "oversaturation" a behaviour

A precise meaning of this series has been given. The theory developed in
this paper is self-consistent, since the main approximation that has been
made consist in neglecting the nucleation effects near the critical line. If P
is a rescaled concentration of clusters and £, is the corresponding rescaled
size of the clusters, the nucleation terms are of order e - 2 T / 3 P f f . This theory
predicts this last term to be bounded by e -2T/3m<&, that it is much smaller
that some of the terms kept in the model, whence the selfconsistence of the
theory follows.

APPENDIX A

In this Appendix the local well-posedness of model (2.10), (2.11),
(2.13), (2.14) is proved.

Theorem 6. For any P0( •) > 0 such that

there exists T=T(00)>0 and a unique solution ( P ( • , •), A ( - ) ) of (2.10),
(2.11), (2.13), (2.14) defined in the interval [TO, TO+ T] that satisfies
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Proof of Theorem 6. Using the variables (2.9) we can transform
(2.10), (2.11), (2.13), (2.14) into the problem (2.7), (2.8) with the boundary
condition

and the initial data

We introduce a new spatial variable 3 by

and a new dependent variable W(£,t) by means of

Then, the problem (2.7) becomes

Notice that in this set of variables the integral condition (2.8) reads

Multiplying (2.7) by l and integrating in the / variable, and using
(2.14), we formally obtain after some integrations by parts the formula

where we have used the condition (A.1). We then prove existence and
uniqueness of solutions of (2.10), (2.11), (2.13), (2.14) by means of a
standard fixed point argument. We write the problem (A.5) as
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where the operator A is the unique self-adjoint Friedrichs extension (cf.
[10]) in the space of functions { W: foo \ W(C)|2C11 /5dC} of the operator
that is defined in Co°(R + ) by

where

and n ( t ) is as in (A.7). It is not hard to check that the semigroup eAl has
the following representation formula

where

where Iv(y) denotes the modified Bessel function of order v (cf. [ 1 ]). Using
the variation of constants formula, (A.8) can be written as

that reduces the original problem to a fixed point argument.
Using the asymptotic formulae for the modified Bessel functions (cf.

[ 1 ]) it follows that

for some suitable constant C > 0. From now on, C will denote a generic
positive constant, possibly changing from line to line. Using (A. 10), (A.12)
and (A. 13) it is not difficult to obtain the estimates
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where (A. 16), (A. 17) are obtained directly from (A. 10) and (A. 12), and in
(A. 14), (A.15) integration by parts is used in order to pass the derivatives
of P to the kernel of the semigroup. It readily follows from (A.9) and
(A.14)-(A.17) that the last term in ( A . l l ) can be estimated as follows

On the other hand, given a solution of (A.5) (not necessarily satisfying
(A.6)) the following identity holds

that implies, using (A,9)

A standard fixed point argument in the class of functions W e L oo

([t0 , t0 + S] ,L°°(R + ) ) n { W : f 0 0 C11/5 W(C, t] dc < oo},n,eLoo[t0, t0 + d]
with p > 0 small enough allows then to conclude the proof of Theorem 6.
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Notice that (A.18) controls the variation of the function Jo° £11/5W(£, t) d£,
and then that of the function n ( t ) by (A.7).

APPENDIX B

In this Appendix we prove many of the results described in Section 5.
It is convenient to show these facts in an order different as that in which
they were stated.

Proof of Theorem 4. Notice that it is enough to prove the existence
of a monotonically increasing function H satisfying (5.24), (5.25) and
(5.27), since (5.26) can be obtained by making a translation of the origin
to a new position Co-

in order to obtain such a function, we define a sequence of functions
H N (£ )= -2/C-31n(|C|)/4C2-l/C2 for (e(-N,-N+\), #=1,2,... and
make then use of (5.24) to extend the definition of HN(£) to the whole line.
Notice that, as long as \1HN(£)\ < 1, (5.24) implies

Let us write Xk,N = sup c e ( _ k , _ k + 1 ) [ H N ( C ) ] . Then ( B . I ) gives

and by definition of H N (£ ) it follows that X _ N , N < 2 / N + 3 I n ( N ) / 4 N 2 -
1 /N 2 . Let us define

It is a simple computation to verify that selecting A > 0 large enough, there
holds

for k<0, |k| large enough but independent on N. Notice that since
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we can argue by induction (using (B.2) and (B.4)) to obtain

for — N < k < —k0, where k0 is a fixed positive number independent on N.
An analogous argument with yk,N = i n f C e ( - k , - k + i ) [ H N ( c ] and the
sequence

with A > 0 large, yields

We then have the estimates

for £< — k0, and using (5.24) we obtain that the functions HN([,) are
uniformly bounded (in N) in compact sets of £. Differentiating in (5.24), we
obtain

Using (B.5), it now follows that

for C< -k0. The choice of HN(£) implies that supce(-N, _N+1)[HN(0)] <
C/N2. Arguing as in the previous case it follows the estimate

for C «£ —k0. Using then (B.6) it is deriveded that H'N is uniformly bounded
in compact sets of f uniformly on N. The procedure can be continued for
higher order derivatives in a similar way. A classical compactness argument
(using Ascoli-Arzela Theorem) allows then to pass to the limit on the func-
tions HN((c), as well as in (5.24), to obtain the existence of a solution of
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(5.24), (5.25). The strict monotonicity of HN(£) follows from the fact that
(B.6) implies the lower bound

for |f| < —k0, where n>0 is independent on N.
To prove uniqueness of the function H, let us assume that there exist

two functions H1,, H2 satisfying (5.24), (5.25), (5.26). Local analysis of the
asymptotics of the functions Hl,H2 (using comparison sequences as
before) yields

as £ -» — oo. Let us consider the function

that solves the equation

Assume that A1 # A2. Then local analysis of this equation implies

if E< -k0. Using (5.24), we then easily obtain H1(0)# H2(0), that contra-
dicts (5.26). Then A1 = A2 and (B.8) yields W(0 = 0.

In order to conclude the proof of Theorem 4, it only remains to verify
(5.27). Passing to the limit in (B.6) as N-> oo, it follows that

and differentiating in (B.9) we obtain
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Using (5.24) and (5.26) we now deduce

Taking £ large enough, we then have

that by iteration implies

for some constant C>0. The formulae (B.10) and (5.25) imply that H is
convex. Then, using (5.24), (B.9), (B. l l ) , it follows that

whence (5.27) follows.

Proof of Theorem 3. The function p defined in (5.20) satisfies
p(x) — 1 <x— 1 if.x> 1. It then follows that the sequence gk(R) is decreasing
for fixed R, and l i m k _ 0 0 ( g k ( R ) ) = 1. Taylor Theorem then gives

as gk(R) — 1 -> 0. Standard analysis of difference equations (cf. [4]) implies
in turn (5.23). It then follows that the product that defines Q(R) in (5.19)
converges. A simple computation reveals that function Q(R) satisfies (5.17).
In order to prove Theorem 3 it is convenient to make the change of
variables

that transforms Eq. (5.17) in

where y(0 = log(f(H(C))). Using the expansion (B7), we can show as in
the proof of Theorem 4 the existence of a solution of this equation such
that
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as £ -» — oo. It is then easy to check that the corresponding function f ( R )
satisfies

as R -> 0. Iterating (B.13) we obtain an expression for this function, namely

For each fixed value of £, we now take the limit as N-> oo. Using (B.14),
we see that

that after some simple computations gives

This concludes the proof of (5.21).
The proof of (5.22) is a consequence of the formula

that is obtained on taking the logarithmic derivative of (5.19) and using
then (5.20). Integration of the inequality

readily implies the first estimate in (5.22). The second estimate there
follows by integrating the estimate

as R -> oo for a > 0 small. This formula in turn is a consequence of
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as R -» oo, that can be obtained by using the Lebesgue dominated con-
vergence theorem and the monotonicity of the functions gk(R) on R. The
proof of (5.23) is just a consequence of (B.7) and (5.24).

Proof of Theorem 2. It is very similar to the proof of Theorem 4,
and therefore only the main ideas will be sketched. Changing variables to
R = H(£), and defining P(£) = f(H(£)) , Eq. (5.15) becomes

Using (5.25) and Taylor expansion, it follows that

as C -> — oo- Using then local barriers as in the proof of Theorem 4, it can
be deduced the existence of an unique solution of (B.15) such that

as f-» — oo. The regularity of ¥(£) can be proved as in the proof of
Theorem 4, whence Theorem 2 follows.

Proof of Theorem 5. Let us define the function

for x e ( H ( N ) , H(N + 1 ) ) , and then extend it to the whole line by means of
(5.15). We claim that

where eN > 0, limN ->oo EN = 0.
To prove (B.17) we introduce the new variable H~1(x) = £. Notice

that the graph of fN.a for x^H(N+ 1) is obtained by iterating the trans-
formation S defined in (5.13) over the portion of curve

where £ e ( N , N + 1 ] . Let us write
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where C e ( N , N+ 1 ]. As indicated before, the curve obtained in this way is
the graph of fN ; a . Using (5.25) it follows that

On the other hand, using (5.13) it is easy to obtain by induction that

where h(e) = log(l +£). Taking into account the monotonicity of h and H
we now obtain

By (5.25) one has that hk[H(f+ a)] =H(£ + a-k). Notice that

It then follows that

where we have used (5.26). This yields the estimate on the left in (B.17).
In order to conclude the proof of (B.17), we notice that the

monotonicity of the function h implies

On the other hand, the concavity of h gives



234 Velazquez

and by induction it readily follows that

Using (5.23) it turns out that IIk=1 (e 2 / l )~e 2 y k 2 as K-> oo. By (5.26),
we then obtain from (B.I8) that

where it is easily checked that BN -»0 as N -> oo, since the functions g,(C)
are increasing on £ and they approach to oo as £ -> oo- Then (B.I7) follows.

We now conclude the proof of the Theorem 5. Notice that (5.16) and
(8.17) imply that in a neighbourhood of the origin, there holds

where C can be chosen arbitrarily small if N is large enough. Taking into
account (5.15), it follows that the estimate (B.19) holds for x e R+. Then

if x €(H(N), H(N+ 1)). Since 6 can be selected arbitrarily small, we finally
obtain

that concludes the proof of Theorem 5.

Proof of (5.38). To conclude this Appendix, we prove the formula
(5.38). It readily follows from (5.20) that

We then obtain the asymptotics
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as k-> oo, where Q(R) is defined in (5.19). We can then write

as k -> oo. Using then (5.23) we obtain

that implies

Making the change of variables y = In(1+n) , we easily deduce that

where R = In(R + 1), T(R) = ln( 1 + T(R)/R + 1). Let us write

where S is as in (5.13). Then

By assumption TN~C(RN)2. The asymptotic behaviour of u(R) as R->0
can be easily obtained by a local analysis of the iteration that defines the
functions gk. Using (B.12), it follows by standard asymptotic techniques
that

as R -» 0, whence

as N-> oo. This concludes the proof of (5.38).
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